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Abstract— This paper reviews recent advances in designing 
unimodular sequences with good auto/cross correlation 
properties along with a new approach that emphasizes on 
independent receiver design.  The general problem is to design 
single or multiple sequences with constant modulus in the time-
domain such that their respective matched filter outputs ideally 
resemble delta functions and the cross-matched filter outputs are 
zeros.  In this context CAN (cyclic-algorithm new) and WeCAN 
(Weighted CAN) have been proposed for designing such 
sequences with good auto-cross correlation properties. In this 
paper, the equivalence of the CAN algorithms and the classic 
Gerchberg-Saxton (GS) algorithm involving the sequential 
magnitude substitution operations in the time and frequency 
domain is demonstrated.  

The design of unimodular sequences is further generalized 
here by considering the receiver design to be more general than 
the respective matched input sequences. The receiver design is 
carried out by taking care of the desired output requirements 
and the freedom present at the input can be used to further 
minimize the output side-lobe level. 

I. INTRODUCTION 
In a series of excellent papers, Stoica et. al. has recently 

addressed the problem of designing unimodular sequences with 
good auto/cross correlation properties [1, 2, 3].  The problem is 
to design single or multiple sequences with constant modulus 
in the time-domain such that their respective matched filter 
outputs ideally resemble delta functions while the cross-
matched filter outputs are zeros.  Since the matched filter 
outputs represent auto and cross-correlations of the original 
sequences, the problem is to design constant modulus time-
series whose auto correlations approximate the delta function, 
and the cross correlations approximate the all-zero function.  In 
this context CAN (cyclic-algorithm new) and WeCAN 
(Weighted CAN) have been proposed for designing such 
sequences with good auto-cross correlation properties [1, 3].  
In this correspondence, the equivalence of the CAN algorithm 
and the classic Gerchberg-Saxton algorithm is demonstrated 
[4].  In the multichannel case, the CAN/WeCAN algorithms 
coincide with the Gerchberg-Saxton algorithm in the time 
domain, and they generalize into the frequency domain in an 
interesting manner. 

The design of unimodular sequences is further generalized 
here by considering the receiver design to be something other 

than their respective matched filters.  The receivers need not 
have the unimodular property, and instead they can emphasize 
on the desired impulse-like properties.  This approach gives 
rise to more efficient receiver design that realize the desired 
output sequences and the freedom present at the input can be 
used to accommodate additional constraints. 

II. GERCHBERG-SAXTON ALGORITHM 
The Gerchberg-Saxton algorithm considers the problem of 

reconstructing a time function with known partial magnitude 
information both in the time and frequency domain.  Thus let 

 ( ) ( )( ) ( ) ( ) ( )j t jf t a t e F M eθ ψ ωω ω= ↔ =  (1) 

represent a Fourier transform pair.  Given the information 

           ( ) 0, 0 ,     and      M( ) 0, oa t t T Bω ω≥ < < ≥ < , (2) 

both in time and frequency domains, the problem is to 
reconstruct the entire ( )f t  in some optimal fashion.  It is well 
known that the set of all signals that have a prescribed value in 
the interval (0, )T  forms a closed convex set C . Convex sets 
have the property that for any point ( )f t  outside C , there 
exists a unique nearest neighbor  ( )Pf t in C  such that [5].  

 ( ) ( ) ( ) ( ) , for all ( ) .f t Pf t f t g t g t C− ≤ − ∈  (3) 

Although the set of all signals MC  with the given 
magnitude transform ( )M ω  over a prescribed bandwidth Ω  
do not form a closed convex set [5], nevertheless, it is possible 
to assign to every arbitrary signal ( )f t  that is outside this set a 
“nearest neighbor” signal ( )MP f t  that belongs to MC  such 
that there exists no other signal ( ) Mg t C∈  for which 

 ( ) ( ) ( ) ( )Mf t g t f t P f t− < −  (4) 

is satisfied.  In the case of closed convex sets the above 
operator is the projection operator and the “nearest neighbor” 
is unique [5].  In the case of the above magnitude substitution 
operator, the uniqueness property is not preserved for the 
“nearest neighbor” and in general only the inequality constraint  

 ( ) ( ) ( ) ( ) , for all ( )M Mf t P f t f t g t g t C− ≤ − ∈  (5) 
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is satisfied.  Given an arbitrary ( )f t , to determine ( )MP f t , we 

need to generate ( ) Mg t C∈  such that 2( ) ( )f t g t−  is 
minimum over Ω .  With ( )( ) ( ) ( ) ,jf t F F e ψ ωω ω↔ =  

 
( )( ) ,

( )
( ), '

j

M
M e

P f t
F

ψ ωω ω
ω ω

⎧ ∈Ω
↔ ⎨

∈Ω⎩
 (6) 

gives the magnitude substitution operator [4, 6, 7].   

Similarly, any prescribed temporal magnitude function 
( ) 0a t >  as in (2), or in particular,  a constant envelope signal 
( )f t  can be expressed as ( )( ) j tf t Ae θ=  where A  is a suitable 

positive constant that can be used to maintain a prescribed 
energy level for ( )f t . It is easy to see that signals with the 
same constant envelope do not form a convex set; however 
their behavior is similar to the signal set with given Fourier 
transform magnitude.  Hence if AC  denotes the set of functions 

{ }( )g t  that maintain a constant envelope level A , although 

AC  is not a convex set, it is possible to define an operator AP  
that assigns to every arbitrary function ( )f t  a nearest neighbor 

( )AP f t  that belongs to AC  as in (5).  Thus with 
( )( ) ( ) j tf t b t e θ= , we have  

 
( ) , (0, )

( )
( ),

j t

A
Ae t T

P f t
f t otherwise

θ⎧ ∈
= ⎨

⎩
 (7) 

where the interval (0, )T  represents the duration over which 
the constant envelope property is to be maintained.  The error 
between ( )kf t  and its constant envelope version ( )A kP f t  or 
the transform magnitude substituted version of ( )M kP f t reduces 
as k → ∞  [6].   

More interestingly, the iteration that combines both the 
Fourier transform substitution operation as well as the constant 
envelope substitution operation has the desired error reduction 
properties.  Thus with 

 1( ) ( ) ( )k A M k A kf t P P f t P g t+ = =  (8) 

where we define ( ) ( )k M kg t P f t= . In that case the error 
reduction property [4] 

 
1 1 1 1 1k k k k M k k M k kd f g f P f f P f d+ + + + += − = − ≤ − =  (9) 

is maintained since (see Fig.  1) 

 1 1 1 1

.
k k M k k M k

A M k M k k M k k

d f P f f P f

P P f P f f P f d
+ + + += − ≤ −

= − ≤ − =
 (10) 

In (8), ( )kf t  represents the constant envelope signal, 
whereas ( )kg t  preserves the desired Fourier transform 
magnitude function.  Furthermore, the above error reduction 
property is maintained also if the above iteration includes 
convex projection operators P  such as in the iteration 

 1( ) ( )k A M kf t P P P f t+ = . (11) 

Here, for example, P  can represent the projection operator that 
truncates the constant modular signal ( )A M kP P f t  to the interval 
(0, )T  obtained by substituting it to zero outside that interval.  
The iterative algorithm (11) also satisfies the error reduction 
property as in (9) - (10) [7].  Equations (8) - (11) represent the 
classic Gerchberg-Saxton algorithm [4]. 

MC

AC
kf

1kf +

M kP f

1M kP f +

kd
1kd +

 
Fig.  1  Error reduction property for magnitude substitution operators. 

Observe that the iteration in (8) is an excellent way to 
prescribe a given Fourier transform magnitude while 
maintaining a constant envelope in the time domain, and 
together they result in iterations that “get closer” in the sense 
of (9).  From (8), 1( )kf t+

 satisfies the constant modulus 
property while only approximating the given magnitude 
transform ( )M ω ; whereas 1( ) ( )k M kg t P f t+=  possesses the 
given magnitude transform while only approximating the 
constant modulus property.  Nevertheless, after a large number 
of iterations, as (9) shows, the difference between these signals 
gets smaller.  Notice that since (9) - (10) do not guarantee 
convergence properties for ( )kf t , and in general there is no 
unique solution.  The final solution is sensitive to the starting 
point ( )of t , and a careful selection of the initial solution based 
on other factors is essential [4, 7, 8, 9]. 

In particular, the discrete version of the Gerchberg-Saxton 
algorithm described above can be summarized as follows [10]: 

Let { } 1

N
i i

f
=

 and { } 1

N
k k

F
=

 form an N-point DFT pair at 

2 , 1k k N k Nω π= = → , whose magnitude values i if a=  

and k kF A=  are specified both in the time and frequency 
domain.  Here ia a=  for example will refer to the unimodular 
case.  Perform the N-point DFT of the given sequence and 
substitute the frequency magnitude sequence to kA , then 
perform the inverse DFT and substitute the temporal 
magnitude values to ia  and repeat the procedure.  For 
example, Wikipedia summarizes the above algorithm as [10]: 

Gerchberg–Saxton Algorithm(Source, Target, 
Retrieved_Phase) 
 A = IFT(Target) 
 while error criterion is not satified 
   B = Amplitude(Source) * exp(i*Phase(A)) 
   C = FT(B) 
   D = Amplitude(Target) * exp(i*Phase(C)) 
   A = IFT(D) 
 end while 
 Retrieved_Phase = Phase(A) 

end Gerchberg–Saxton Algorithm 

(12) 

The error reduction property in (9) is guaranteed in this 
case also.  Interestingly for the N-point discrete case, the above 
algorithm implicitly contains the temporal limiting projection 
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operator P  described in (11) and hence it represents the 
iteration in (11). 

III. UNIMODULAR SEQUENCES UISNG CAN AND WECAN  

In the single channel case, as Fig.  2 shows, the problem is 
to design a sequence { } 1

N
i i

x
=

 such that 1ix =  for 1i N= → , 
and their matched filter outputs approximate an ideal delta 
function for pulse compression and sidelobe suppression.  
Since the matched filter outputs { } 1

( 1)

−

=− −

N
k k N

r  are the 

autocorrelations of the input sequence, we have 

 
1

, 0, 1, ( 1) .
N

k i i k k
i k

r x x r k N∗ ∗
− −

= +

= = = ± ± −∑  (13) 

{ }N ix ∗
− { }kr{ }ix

or

kr
 

Fig.  2  Matched filter. 

Hence for pulse compression and side lobe suppression, 
ideally we must have a delta function at the output, i.e., 1or = , 

0, 1kr k= ≥  or in this context, minimization of the total 
sidelobe error [3] 

 
1

22

1
( 1) 2

N

o k
k

r rε
−

=

= − + ∑  (14) 

has been suggested as a suitable criterion.  The minimization of 
the above error is closely related to the minimization of the 
integrated sidelobe level (ISL) 

 
1

2

1

,
N

k
k

ISL r
−

=

= ∑  (15) 

or the maximization of the merit factor (MF) 2 2oMF r ISL=  
proposed in the literature [11,12].  It is easy to relate the error 
in (14) or the ISL in (15) to the classic discrete-time Fourier 
transform of the sequence { }ix  given by 

1

( ) .
N

ji
i

i

X x e ωω −

=

= ∑  

Using (13), the corresponding spectrum ( )S ω  is given by  

 
1

2

( 1)

( ) ( )
N

jk
k

k N

S X r e ωω ω
−

−

=− −

= = ∑  (16) 

and hence when the ideal conditions where kr  is delta function 
are substituted into (16) we obtain the new requirement  

 ( ) 1S ω ≡  (17) 

for all ω  in the frequency domain.  Eq. (17) represents the 
well known result that to achieve excellent pulse compression, 
the input sequence must exhibit flat spectrum.  Since the 
requirement in (17) is impossible to maintain over all 
frequencies by nontrivial finite sequences, to generate 
unimodular finite length sequences that satisfy (17), the 

optimization problem 2

1
min ( )

i
o x

S Iω
=

∆ = −  is more 

meaningful.  It also involves the difficult task of minimizing 
the error over all frequencies.  However, the relaxed criterion 

 
2

2
1

1

1 2( ) ,
2 2

N

n n
n

nS I
N N

πω ω
=

∆ = − =∑  (18) 

obtained by averaging the spectral error only at 2N  equally 
spaced discrete points is more appealing since it is also equal 
to the total sidelobe error ε  in (14).  Using (16), we also have 

 ( )
2 22

1
1

1 ( ) 1
2

N

n
n

X
N

ω
=

∆ = −∑  (19) 

and clearly (19) is minimized by letting [1] 

 ( ) , 1 2nj
nX e n Nψω = = → . (20) 

( )ωnX  represent the DFT coefficients at frequencies 
2 / 2 ,n n Nω π=  and constraint (20) is implementation of the 

unity magnitude substitution requirement in the discrete 
frequency domain as in (12) .  Using the 2 2N N×  DFT matrix 

D  whose ( , )thi j  element is given by 2 / 2
,

1
2

j i k N
i kD e

N
π= , 

we can rewrite the 2N  equations in (20) compactly as 

        21 2, , ,N
Tjj jX e e e V or X Vψψ ψ∗ ⎡ ⎤= =⎣ ⎦D D  (21) 

where the 2 1N ×  vector X  

 [ ]1 2, , , 0 0 , 1T
N iX x x x x= =  (22) 

represents the extended data vector with ix , 1i N= →  
representing the unimodular entries.  Equations (21) - (22) 
suggest that for the above minimization problem, the 2N -
point DFT of the constant modulus data vector X  in (22) in 
the temporal domain should generate another constant modulus 
vector V  in the frequency domain and the CAN/WeCAN 
algorithms perform these operations by employing the 
magnitude substitution operation both in the frequency domain 
and the time domain sequentially till the desired accuracy is 
achieved [1, 2, 3].  But this is the same as a Gerchberg-Saxton 
algorithm described in (8) - (12).  The CAN algorithm in (21) - 
(22) resets the second half of the temporal coefficients to zero 
in (22) at every stage, and it corresponds to the projection 
operator P  associated with the time-limiting operation in (11). 

IV. MULTI-CHANNEL CASE 
The multichannel version of the CAN approach also uses 

the Gerchberg-Saxton algorithm in the time domain while 
generalizing it in frequency domain. The N M×  matrix [2, 3]  

 

1

2
1 2, ,

T

T

M

T
N

y

y
x x x

y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X  (23) 
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containing the M  temporal sequences 

 
,1 ,2 , ,, , , 1 , 1

T

i i i i N i jx x x x i M x⎡ ⎤= = → =⎣ ⎦  (24) 

represent M  orthonormal sequences each with N  unimodular 
samples, where the thn  row 

 1 2[ ( ), ( ), ( )]T
n My x n x n x n=  (25) 

in (23) corresponds to the M channel outputs at the thn  time 
instant.  Under stationary assumptions, cross-correlations of 
different channel waveforms give rise to the auto/cross-
correlation coefficients 

 
,

1
( ) ( ) ( ) .

N k

i j i j
n

r k x n x n k
−

∗

=

= −∑  (26) 

Using (25), the M M×  auto/cross-correlation coefficient 
matrices generated using (26) can be compactly expressed also 
using the 1M ×  column vectors ny  as 

 ( )
1

( ) , 0 1
N k

k n n k i j
n

y y r k k N
−

∗
−

=

= = = → −∑R  (27) 

where kR  represents the M M×  cross-covariance matrix 
corresponding to lag k .  For orthonormal sequences we require 

 , 0, 1o k k= = ≥R I R . (28) 

Following (14)-(15), if we define the total sidelobe error 
criterion  

 
1

2 2

1
2 ,

N

o k
k

ε
−

=

= − + ∑R I R  (29) 

then, as before with 
1

( )
N

j i
i

i
Z y e ωω −

=

= ∑ , we have the power 

spectral density matrix 

 
1

( 1)
( ) ( ) ( )

N
jk

k
k N

Z Z e ωω ω ω
−

∗ −

=− −

= ∑S R  (30) 

so that once again the desired error criterion in (28) can be 
expressed as ( )ω ≡S I .  As in (18), the relaxed criterion  

 
2

2
1

1

1 2( ) ,
2 2

N

k k
k

k
N N

πω ε ω
=

∆ = − = =∑ S I  (31) 

is more useful in this context since it relates the point power 
spectral error with the total sidelobe error in (29).  Expanding 
(31) using (30) we also obtain [3] 

 ( )
2 22

1

1 ( ) 1 1
2

N

k
k

Z M
N

ε ω
=

= − + −∑  (32) 

so that minimization of ε  is achieved by setting  

 2( ) , 1, 1 2k k kZ k Nω α α= = = →  (33) 

in (32).  Notice that kα  in (33) are the 2N-point DFT vectors, 
and their normalization requirement is a magnitude constraint 

in the frequency domain.  Once again, Eq. (33) can be 
compactly expressed as  

 
1 1

22 2

2 2

( )
( )

, 1, 1

( )

T T

T T

i j k

T T
N N

Z
Z

x

Z

ω α
ω α

α

ω α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥= = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X
D V0

 (34) 

where X  is defined as in (23) with , 1i jx = .  Observe that the 

normalization of kα  in the frequency domain in (33) - (34) is a 
generalization of the scalar version of the Gerchberg-Saxton 
algorithm since  

 2 2

1

( ) ( )α ω ω
=

= =∑
M

k m k k
m

Z M  (35) 

represents the sum of the magnitudes of the various channel 
components of  the DFT coefficients. Following (33) - (34), 
the multichannel version of the CAN algorithm performs the 
magnitude substitution operation sequentially both in the 
frequency domain ( 2 1kα = ) and in the time domain 

( 1i jx = ) as in the Gerchberg-Saxton algorithm in (12).    

Fig.  3 shows the matched filter receiver outputs of a ten 
channel unimodular sequence of length 200 generated using 
the CAN algorithm in (33) - (34). Both Fig.  3(a) and (b) 
contain ten auto-correlation sequences and 90 cross-correlation 
sequences. Notice that the auto/cross correlation terms are at 
about 20 dB below the peak term. The sidelobe levels here can 
be further improved by considering various weighting 
sequences as well [2, 3]. 

Delay  
(a) Front view 

Delay

Sensors
 

(b) Side view 

Fig.  3  A ten channel unimodular sequence design using the 
multichannel CAN algorithm in (33) - (34).  Each figure contains 
ten autocorrelation sequences and 90 cross-correlation sequences. 
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V. GENERAL UNIMODULAR SEQUENCES 
The design of unimodular sequences can be further 

generalized by considering the receiver design to be 
independent from the actual matched filter sequences. This 
approach is useful in many applications including radar, where 
the receiver does not have to be unimodular and can be 
something other than the matched filter sequence.  In this 
context, the problem is to design M  input unimodular 
sequences ix , 1i M= → , , 1i jx =  each of length N  as in 
(23), and their corresponding receivers 

 , 1 , 2 ,[ , , ], 1i i i i Kh h h h i M= = →  (36) 

such that the receiver outputs should satisfy the “desired” 
output sequence properties.  Thus with  

,
1

( ) ( ) ( 1), 1 1
N

i m i m
k

z n x k h n k n N K
=

= − + = → + −∑  (37) 

representing the output at the thm  receiver due to the thi  
sequence at time instant n , then ideally, we require (Fig.  4) 

 ,
,

( ),
( )

0,
i m o

i m

n n i m
z n

i m
δ − =⎧

= ⎨ ≠⎩
 (38) 

where on  corresponds to the desired peak term at the output.  
In general, the receiver length K  is a free parameter left to 
other design considerations.     

1h

2h

Mh

1x

2x

Mx

11z

22z

M Mz

12z

21z

M kz
 

Fig.  4  Generalized unimodular sequences. 

One approach in this context is to use a criterion similar to 
the merit factor (MF).  Thus if we define 

 
2

12 2

1

( )
, 1

( ) ( )
o

ii o
i N K

i i i j
n n j i n

z n
i M

z n z n
η + −

≠ ≠ =

= = →
+∑ ∑ ∑

 (39) 

to represent the ratio of the receiver output peak value power to 
the total undesired sidelobe power at each receiver output, then 
the receiver design problem is to maximize iη , 1i M= → .  
Observe that the criterion in (39) is well known and it is the 
same as the approach behind the classical matched filter.  Eq. 
(39) can be expressed in matrix form as 

 
2

, 1on i
i

i i i

b h
i M

h h
η ∗= = →

A
 (40) 

where 

 ,0 , 0 0i i i j j
∗ ∗= + >∑A F F F F  (41) 

represents a K K×  positive-definite matrix, and iF  represents 
the ( 1)N K K+ − ×  matrix 

 

(1) 0 0 0
(2) (1) 0

(2) 0
( ) (1) 0
0 ( ) (1)
0 0 ( 1)

( ) ( 1)
0 0 0 0 ( )

i

i i

i

i i
i

i i

i

i i

i

x
x x

x
x N x

x N x
x N

x N x N
x N

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

F

 (42) 

generated from the thi  input sequence ix .  In (41),  , 0iF  
represents the ( 2)N K K+ − ×  matrix generated from iF  with 
its on  row deleted.  Finally in (40), 

onb  represents the row 
vector correspond to the on  row of iF .  Thus in general 

[ ]0, 0, ( ), ( 1), (1), 0, 0
on i i ib x N x N x= −  (43) 

for on N> .  The number of zeros in (43) depends on the value 
of on  with respect to N .  For example, with on N=  and 
K N= , the vector 

onb  is the same as the flipped version of ix  
in (25).  Schwarz inequality applied to (40) gives the optimum 

thi  receiver filter to be  

 1
oi i nh b− ∗= A . (44) 

Observe that the receivers ih  in (44) are obtained non-
iteratively and the freedom present at the input makes the 
unimodular constraint trivial to implement at the input.  
Although each receiver design depends on all input sequences 
through the matrix iA  in (41), nevertheless they can be 
determined in an uncoupled manner as in (44).  Furthermore, 
the explicit design for the receiver allows freedom in deciding 
the output instant on  at which the peak should be observed. 
This freedom allows the various peak outputs to be time 
aligned, a desired property in some radar applications. 

Fig.  5 shows the receiver output using the new design 
approach in (44) for a ten channel randomly generated 
unimodular sequences of length 200.  For comparison 
purposes, here the receiver length is set equal to 200.  Notice 
that the auto/cross sidelobe terms are about 20 dB below the 
peak value, similar to that in Fig.  3. This represents 
performance similar to the CAN sequences obtained using (33) 
- (34).  In this new approach, additional optimization can be 
carried out at the input to further reduce the sidelobe level and 
for compression in the Doppler domain. 
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(a) Front view 

 
(b) Side view 

Fig.  5  A ten channel unimodular sequence auto and cross terms 
at the output of the sidelobe minimizer receiver in (44).  (a) Front 
view, (b) Side view. 

VI. CONCLUSIONS 
This paper reviews recent advances in designing 

unimodular sequences with good auto/cross correlation 
properties along with a new approach that emphasizes on 
independent receiver design by minimizing the sidelobes.  
Since the matched filter outputs represent auto and cross-
correlations of the original sequences, the problem is to design 
constant modulus time-series whose auto correlations 
approximate the delta function, and the cross correlations 
approximate the all-zero function.  In this context, CAN 
(cyclic-algorithm new) and WeCAN (Weighted CAN) have 
been proposed for designing such sequences with good auto-
cross correlation properties.  The equivalence of the 
CAN/WeCAN algorithms and the classic Gerchberg-Saxton 
(GS) algorithm involving the sequential magnitude substitution 
operations in the time and frequency domain is demonstrated 
here, with an interesting generalization of the GS algorithm to 
the multichannel case.   

The design of unimodular sequences is further generalized 
here by considering the receiver design to be independent from 
the actual input sequences.  The receiver design takes care of 
the sidelobe requirements and the freedom present at the input 
can be used to further minimize the output sidelobe levels.  
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